CIRCLES

1. The set of points in a plane which are at a constant distance ' r ' (≥ 0) from a given point C is called a circle. The fixed point C is called the centre and the constant distance r is called the radius of the circle.
2. A circle is said to be a unit circle if its radius is 1 unit.
3. A circle is said to be a point circle if its radius is zero. A point circle contains only one point, the centre of the circle.
4. The equation of the circle with centre $C(a, b)$ and radius ' r ' is $(x-a)^{2}+(y-b)^{2}=r^{2}$.
5. The equation of a circle simplest form is of the form $x^{2}+y^{2}+2 g x+2 f y+c=0$. The equation of a circle with centre origin and radius ' r ' is $x^{2}+y^{2}=r^{2}$.
6. If $g^{2}+f^{2}-c \geq 0$ then the equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle with centre ($-g$, $-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
7. The conditions that the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represent a circle are (i) $a=$ b; (ii) $h=0$; (iii) $g^{2}+f^{2}-a c \geq 0$.
8. If $a x^{2}+a y^{2}+2 g x+2 f y+c=0$ represents a circle, then its centre $=(-g / a,-f / a)$ and its radius $=$ $\sqrt{g^{2}+f^{2}-a c} /|a|$.
9. We use the following notation in circles.
$S \equiv x^{2}+y^{2}+2 g x+2 f y+c$
$S_{1} \equiv x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c$
$S\left(x_{1}, y_{1}\right)=S_{11} \equiv x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c$
$\mathrm{S}_{12} \equiv \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{g}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\mathrm{f}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)+\mathrm{c}$
10. Let $S=0$ be a circle and $P\left(x_{1}, y_{1}\right)$ be a point. Then
i) P lies inside the circle $S=0 \Leftrightarrow S_{11}<0$
ii) P lies on the circle $S=0 \Leftrightarrow S_{11}=0$
iii) P lies outside the circle $S=0 \Leftrightarrow S_{11}>0$
11. The power of a point $P(x, y)$ with respect to the circle $S=0$ is S_{11}.
12. Let $S=0$ be a circle with centre C and radius ' r '. Let P be a point. Then $C P^{2}-r^{2}$ is called power of P with respect to the circle $S=0$.
13. Let $S=0$ be a circle and P be a point. Then
i) P lies inside the circle $\mathrm{S}=0 \Rightarrow \mathrm{~S}_{11}<0$
ii) P lies in the circle $S=0 \Rightarrow s_{11}=0$
iii) P lies outside the circle $S=0 \Rightarrow S_{11}>0$
14. The equation of a circle having the line segment joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ as diameter is $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$.
15. Two circles are said to be concentric if their centres are the same.
16. The equation of a circle concentric with the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is of the form $x^{2}+$ $y^{2}+2 g x+2 f y+k=0$, where k is a constant.
17. Given 3 points A, B, and C then
i) only one circle passes through A, B, and C iff A, B, C are non collinear.
ii) A circle through A, B, C is impossible iff A, B, C are collinear
18. The equation of the circumcircle of the triangle formed by the line $a x+b y+c=0$ with the coordinate axes is $a b\left(x^{2}+y^{2}\right)+c(b x+a y)=0$.

The general form of equation of the circle circumscribing the triangle formed by the lines $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}$ $+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, a_{3} x+b_{3} y+c_{3}=0$ is $a\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)+b\left(a_{2} x+b_{2} y+\right.$ $\left.c_{2}\right)\left(a_{3} x+b_{3} y+c_{3}\right)+c\left(a_{3} x+b_{3} y+c_{3}\right)\left(a_{1} x+b_{1} y+c_{1}\right)=0$.
If two lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ meet the coordinate axes in four distinct points then those points are concyclic $\Leftrightarrow a_{1} a_{2}=b_{1} b_{2}$.
19. If the lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ meet the coordinate axes in four distinct concyclic points, then the equation of the circle passing through these concyclic points is $\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x\right.$ $\left.+b_{2} y+c_{2}\right)-\left(a_{1} b_{2}+a_{2} b_{1}\right) x y=0$.
20. The equation of the chord joining the two points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ in the circle $S=0$ is $S_{1}+S_{2}=$ S_{12}.
21. The equation of the tangent to the circle $S=0$ at $P\left(x_{1}, y_{1}\right)$ is $S_{1}=0$.
22. The equation of the normal to the circle $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ at $P\left(x_{1}, y_{1}\right)$ is $\left(y_{1}+f\right)(x-$ $\left.x_{1}\right)-\left(x_{1}+g\right)\left(y-y_{1}\right)=0$.
23. The normal to the circle $\mathrm{S}=0$ at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ passes through the centre $(-\mathrm{g},-\mathrm{f})$ of the circle.
24. The equation of the normal to the circle $x^{2}+y^{2}=r^{2}$ at $P\left(x_{1}, y_{1}\right)$ is $y_{1} x-x_{1} y=0$.
25. Let $\mathrm{L}=0$ be a straight line and $\mathrm{S}=0$ be a circle with centre C and radius ' r '. Let d be the perpendicular distance from C to the line $\mathrm{L}=0$. Then
i) $L=0$ touches the circle $S=0 \Leftrightarrow r=d$.
ii) $\mathrm{L}=0$ intersects the circle $\mathrm{S}=0 \Leftrightarrow \mathrm{r}>\mathrm{d}$. Let
$\mathrm{L}=0$ be a line and $\mathrm{S}=0$ be a circle with centre C and radius ' r '. Let d be the perpendicular distance from C to the line $\mathrm{L}=0$. If $\mathrm{r}>\mathrm{d}$ then
$L=0$ is a chord of the circle $S=0$. The length of the chord $=2 \sqrt{r^{2}-d^{2}}$. If $r<d$ then $L=0$ do not intersect the circle $\mathrm{S}=0$.
iii) $L=0$ does not touch or intersect the circle $S=0 \Leftrightarrow r<d$.
26. The condition for the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ to touch the coordinate axes is $g^{2}=f^{2}=c$.
27. The condition for the straight line $y=m x+c$ to touch the circle $x^{2}+y^{2}=r^{2}$ is $c^{2}=r^{2}\left(1+m^{2}\right)$.
28. The condition for the x-axis to touch the circle $x^{2}+y^{2}+2 g x+2 f y+c=0(c>0)$ is $g^{2}=c$.
29. The condition for the y-axis to touch the circle $x^{2}+y^{2}+2 g x+2 f y+c=0(c>0)$ is $f^{2}=c$.
30. The condition for the straight line $l x+m y+n=0$ may be a tangent to the circle $x^{2}+y^{2}+2 g x+$ $2 \mathrm{fy}+\mathrm{c}=0$ is $\left(\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}\right)\left(\mathrm{l}^{2}+\mathrm{m}^{2}\right)=(\mathrm{lg}+\mathrm{mg}-\mathrm{n})^{2}$.
31. If the straight line $y=m x+c$ touches the circle $x^{2}+y^{2}=r^{2}$, then their point of contact is $\left(-\frac{r^{2} m}{c}, \frac{r^{2}}{c}\right)$.
32. The equation of a tangent to the circle $x^{2}+y^{2}=r^{2}$ may be taken as $y=m x \pm r \sqrt{1+m^{2}}$.

The condition that the straight line $l x+m y+n=0$ may touch the circle $x^{2}+y^{2}=r^{2}$ is $n^{2}=r^{2}\left(l^{2}\right.$ $+\mathrm{m}^{2}$) and the point of contact is $\left(\frac{-r^{2} I}{n}, \frac{-r^{2} m}{n}\right)$.
33. Let $\mathrm{S}=0$ be a circle with centre (a, b) and radius ' r '. Then
i) $S=0$ touches x-axis $\Leftrightarrow r=|b|$
ii) $S=0$ touches y-axis $\Leftrightarrow r=|a|$
iii) $S=0$ touches both the axes $\Leftrightarrow r=|\alpha|=|\beta|$
34. If the tangent drawn from an external point P to a circle $\mathrm{S}=0$ touches the circle at A then PA is called length of tangent from P to the circle $S=0$.
35. The length of the tangent drawn from an external point $P\left(x_{1}, y_{1}\right)$ to the circle $S=0$ is $\sqrt{\mathrm{S}_{11}}$.
36. The length of the intercept made by the circle
$S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ on (i) x-axis is $2 \sqrt{g^{2}-c}$ (ii) y-axis is $2 \sqrt{f^{2}-c}$.
37. If a line passing through a point $P\left(x_{1}, y_{1}\right)$ intersects the circle $S=0$ at the points A and B then $\mathrm{PA} \cdot \mathrm{PB}=\mathrm{S}_{11}$.
38. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are four points of which no three are collinear such that $\mathrm{PA} \cdot \mathrm{PC}=\mathrm{PB} \cdot \mathrm{PD}$ for some point P then the point D lies on the circle passing through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ (ie., $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are concyclic).
39. Two tangents can be drawn to a circle from an external point.
40. The line joining the points of contact of the tangents to a circle $S=0$ drawn from an external point P is called chord of contact of P with respect to $S=0$.
41. The equation to the chord of contact of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to the circle $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.
42. The locus of the point of intersection of the tangents to the circle $S=0$ drawn at the extremities of the chord passing through a point P is a straight line $\mathrm{L}=0$, called the polar of P with respect to the circle $S=0$. The point P is called the pole of the line $L=0$ with respect to the circle $S=0$.
43. The equation of the polar of the point $P\left(x_{1}, y_{1}\right)$ with respect to the circle $S=0$ is $S_{1}=0$.
44. If P lies outside the circle $\mathrm{S}=0$ then the polar of P meets the circle in two points and the polar becomes the chord of contact of P.
45. If P lies on the circle $S=0$ then the polar of P becomes the tangent at P to the circle $S=0$.
46. If P lies inside the circle $S=0$, then the polar of P does not meet the circle in any point.
47. If P is the centre of the circle $\mathrm{S}=0$, then the polar of P with respect to $\mathrm{S}=0$ does not exist.
48. The pole of the line $l x+m y+n=0(n \neq 0)$ with respect to $x^{2}+y^{2}=r^{2}$ is $\left(\frac{-r^{2} I}{n}, \frac{-r^{2} m}{n}\right)$.
49. Two points P and Q are said to be conjugate points with respect to the circle $\mathrm{S}=0$ if the polar of P with respect to $\mathrm{S}=0$ passes through Q .
50. The condition for the points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ to be conjugate with respect to the circle $\mathrm{S}=0$ is $\mathrm{S}_{12}=0$.
51. Two lines $L_{1}=0, L_{2}=0$ are said to be conjugate with respect to the circle $S=0$ if the pole of $L_{1}=$ 0 lies on $\mathrm{L}_{2}=0$.
52. The condition for the lines $\mathrm{l}_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$ and $\mathrm{l}_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0$ to be conjugate with respect to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}\left(l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}\right)=\mathrm{n}_{1} \mathrm{n}_{2}$.
53. Let $\mathrm{S}=0$ be a circle with centre C and radius r . Two points P, Q are said to be inverse points with respect to $S=0$ if i) C,P, Q are collinear (ii) P, Q lies on the same side of C (iii) $\mathrm{CP} . \mathrm{CQ}=\mathrm{r}^{2}$.
54. If P, Q are a pair of inverse points with respect to a circle $S=0$ then Q is called inverse point of P.
55. Let $\mathrm{S}=0$ be a circle with centre C and radius ' r '. The polar of a point P with respect to the circle $S=0$ meets $\overleftrightarrow{C P}$ in Q iff P, Q are inverse points with respect to $S=0$.
56. If P, Q are inverse points with respect to $S=0$ then P, Q are conjugate points with respect to $S=0$.
57. If P, Q are inverse points with respect to $S=0$ then Q is the foot of the perpendicular from P on the polar of P with respect $S=0$.
58. The polar of a point P with respect to a circle with centre C is a perpendicular to $\overleftrightarrow{\mathrm{CP}}$.
59. The equation of the chord of the circle $S=0$ having as its midpoint is $S_{1}=S_{11}$.
60. The equation to the pair of tangents to the circle
$\mathrm{S}=0$ from $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}^{2}=\mathrm{S}_{11} \mathrm{~S}$.
61. If $P(x, y)$ is a point on the circle with centre $C(\alpha, \beta)$ and radius r, then $x=\alpha+r \cos \theta, y=\beta+r \sin \theta$ where $0 \leq \theta<2 \pi$.
62. The equations $x=\alpha+r \cos \theta, y=\beta+r \sin \theta, 0 \leq \theta<2 \pi$ are called parametric equations of the circle with centre (α, β) and radius r.
63. A point on the circle $x^{2}+y^{2}=r^{2}$ is taken in the form $(r \cos \theta, r \sin \theta)$. The point $(r \cos \theta, r \sin \theta)$ is simply denoted as point θ.
64. The equation of the chord joining two points θ_{1} and θ_{2} on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is $(x+g) \cos \frac{\theta_{1}+\theta_{2}}{2}+(y+f) \sin \frac{\theta_{1}+\theta_{2}}{2}=r \cos \frac{\theta_{1}-\theta_{2}}{2}$, where r is radius of circle.
65. The equation of the tangent at $P(\theta)$ on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is $(x+g) \cos \theta+(y+f) \sin \theta=\sqrt{g^{2}+f^{2}-c}$.
66. The equation of the tangent at $\mathrm{P}(\theta)$ on the circle
$x^{2}+y^{2}=r^{2}$ is $x \cos \theta+y \sin \theta=r$.
67. The equation of the normal at $\mathrm{P}(\theta)$ on the circle $x^{2}+y^{2}=r^{2}$ is $x \sin \theta-y \cos \theta=0$.
68. If ($\mathrm{x}_{1}, \mathrm{y}_{1}$) is one end of a diameter of the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$, then the other end is
$\left(-2 g-x_{1},-2 f-y_{1}\right)$.
69. The area of the triangle formed by the tangent at $\left(x_{1}, y_{1}\right)$ on the circle $x^{2}+y^{2}=a^{2}$ with the coordinate axes is $\frac{a^{4}}{2\left|x_{1} y_{1}\right|}$.
70. If $l x+m y=1$ touches the circle $x^{2}+y^{2}=a^{2}$ then $l^{2}+m^{2}=a^{-2}$.
71. The pole of the line $l x+m y+n=0$ with respect to the circle $(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}$ is $\left(\alpha-\frac{r^{2} l}{N}, \beta-\frac{r^{2} m}{N}\right)$ where $N=l \alpha+m \beta+n$.
72. If A and B are conjugate points with respect to a circle $S=0$ and l_{1}, l_{2} are the lengths of tangents from A, B to $\mathrm{S}=0$, then $\mathrm{AB}^{2}=l_{1}^{2}+l_{2}^{2}$.
73. The middle point of the chord intercepted on the line $l x+m y+n=0$ by the circle $x^{2}+y^{2}=a^{2}$ is $\left(\frac{-\ln }{l^{2}+\mathrm{m}^{2}}, \frac{-\mathrm{mn}}{l^{2}+\mathrm{m}^{2}}\right)$.
74. The length of the intercept cut of from the line $a x+b y+c=0$ by the circle $x^{2}+y^{2}=r^{2}$ is $2 \sqrt{\left[\frac{r^{2}\left(a^{2}+b^{2}\right)-c^{2}}{a^{2}+b^{2}}\right]}$.
75. If (x_{1}, y_{1}) is the midpoint of the chord $A B$ of the circle $S=0$ then length of $A B$ is $2 \sqrt{-S_{11}}$.
76. If ($\mathrm{x}_{1}, \mathrm{y}_{1}$) is the midpoint of the chord AB of the circle $\mathrm{S}=0$ and the tangents at A, B meet at C then the area of $\triangle \mathrm{ABC}$ is $\frac{\left(-\mathrm{S}_{11}\right)^{3 / 2}}{\sqrt{\mathrm{~S}_{11}+\mathrm{r}^{2}}}$ where r is the radius of the circle.
77. The locus of midpoint of the chord of a circle $S=0$, parallel to $L=0$ is the diameter of $S=0$ and which is perpendicular to $\mathrm{L}=0$.
78. If θ is the angle between the pair of tangents drawn from $\left(x_{1}, y_{1}\right)$ to the circle $S=0$ of radius r then $\tan \frac{\theta}{2}=\frac{r}{\sqrt{S_{11}}}$.
79. If $l_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0, l_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0$ are conjugate lines w.r.t tue circle $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ then, $\left(l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}\right)\left(\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}\right)=\left(\mathrm{g} l_{1}+\mathrm{fm}_{1}-\mathrm{n}_{1}\right)$
$\left(\mathrm{g} l_{2}+f m_{2}-n_{2}\right)$
80. The length and the midpoint of the chord $l x+m y+n=0(n \neq 0)$ w.r.t the circle $x^{2}+y^{2}=a^{2}$ is $2 \sqrt{\frac{\mathrm{a}^{2}\left(\ell^{2}+\mathrm{m}^{2}\right)-\mathrm{n}^{2}}{\ell^{2}+\mathrm{m}^{2}}},\left(\frac{-\ell \mathrm{n}}{\ell^{2}+\mathrm{m}^{2}}, \frac{-\mathrm{mn}}{\ell^{2}+\mathrm{m}^{2}}\right)$.
81. The condition that the pair of tangents drawn from the origin to the circle $x^{2}+y^{2}+2 g x+2 f y+c=$ 0 may be at right angles is $\mathrm{g}^{2}+\mathrm{f}^{2}=2 \mathrm{c}$.
82. EQ of the circle passing through (a, b), (a, a) and (b, a) is $x^{2}+y^{2}-x(a+b)-y(a+b)+2 a b=0$.
83. If two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ meet the coordinate axes in four distinct points then those points are concylic if $a_{1} a_{2}=b_{1} b_{2}$ and its centre is $\left(\frac{\text { sum of } x \text {-intercepts }}{2}, \frac{\text { sum of } y \text {-intercepts }}{2}\right)$.
84. A square is inscribed in the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ with its sides parallel to the axes of coordinates. The coordinates of the vertices are $\left(-g \pm \frac{r}{\sqrt{2}},-f \pm \frac{r}{\sqrt{2}}\right)$ and its side $a=\sqrt{2} r$.
85. An equilateral triangle is inscribed in the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$ then
i) the area of circle $=\frac{3 \sqrt{3}}{4}\left(g^{2}+f^{2}-c\right)$
ii) side $a=\sqrt{3} r$
86. The farthest distance of an external point $p\left(x_{1} \cdot y_{1}\right)$ to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is $c p+r$.
87. The farthest point on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ form an external point $P\left(x_{1}, y_{1}\right)$ is B which divides centre c and p in the ratio $\mathrm{r}: \mathrm{cp}+\mathrm{r}$ externally.
88. The nearest point on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ from an external point $p\left(x_{1}, y_{1}\right)$ is A which divides centre c and p in the ratio $r: c p-r$ internally.
89. The locus of the point of intersection of two perpendicular tangents to $s \equiv x^{2}+y^{2}+2 g x+2 f y+c=$ 0 is $\mathrm{s}-\mathrm{r}^{2}=0$.
90. Area of the triangle formed by tangent at $\left(x_{1}, y_{1}\right)$ to $s=0$ with coordinate axes is $\frac{1}{2} \frac{g x_{1}+f y_{1}+\left.c\right|^{2}}{\left|x_{1}+g \| y_{1}+f\right|}$.
91. Tangents from a point are drawn one to each concentric circle $s_{1}=0$ and $s_{2}=0$. If the tangents are perpendicular then the locus of the points is
$(x+g)^{2}+(y+f)^{2}=r_{1}{ }^{2}+r_{2}{ }^{2}$.
92. For any point on the circle $x^{2}+y^{2}=a^{2}$ tangents are drawn to the circle $x^{2}+y^{2}=b^{2}(a>b)$ then the angle between the tangents is $2 \sin ^{-1}(\mathrm{~b} / \mathrm{a})$.
93. The area of the Quadrilateral formed by the two tangents through $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the circle and centre is $r \sqrt{s_{11}}$.
94. The angle subtended by the midpoint of chord at the centre of the circle is $\theta=2 \cos ^{-1}(d / r)$.
95. The locus of the mid points of chords of the circle $s=0$ makes an angle 90° at the centre of the circle is $(x+g)^{2}+(y+f)^{2}=r^{2} / 2$

