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CIRCLES

The set of points in a plane which are at a constant distance ‘r’ (> 0) from a given point C is called
a circle. The fixed point C is called the centre and the constant distance r is called the radius of the
circle.

A circle is said to be a unit circle if its radius is

1 unit.

A circle is said to be a point circle if its radius is zero. A point circle contains only one point, the
centre of the circle.

The equation of the circle with centre C (a, b) and radius ‘r" is (x - a)? + (y — b)* = r%.

The equation of a circle simplest form is of the form x* + y? + 2gx + 2fy + ¢ = 0. The equation of a
circle with centre origin and radius ‘r’ is x* +y® =r%

If g% + f —c > 0 then the equation x* +y? + 2gx + 2fy + ¢ = 0 represents a circle with centre (g,

—f) and radius g +f? -c.

The conditions that the equation ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0 represent a circle are (i) a =
b; (ii) h = 0; (iii) g* + P —ac > 0.

If ax? + ay? + 2gx + 2fy + ¢ = 0 represents a circle, then its centre = (-g/a, —f/a) and its radius =

Jo? +f2—ac/|a]l.

We use the following notation in circles.

S=x*+y?+2gx+2fy +c

S1=XX1+yyr +g(X +x1) +f(y +y1) +¢

S(X1, Y1) = S11 = x2 +yZ +2gx, + 2fy, + ¢

S12=X1X2 + Y1¥2 + g(X1 + X2) + fy1 +y2) + C

Let S =0 be a circle and P(x3, y1) be a point. Then

i) P lies inside the circle S=0 < S;3 <0

ii) P lieson thecircle S=0«<S;; =0

iii) P lies outside the circle S =0 < S;1>0

The power of a point P(X, y) with respect to the circle S = 0 is Sy;.

Let S = 0 be a circle with centre C and radius ‘r’. Let P be a point. Then CP? - r is called power of
P with respect to the circle S = 0.

Let S =0 be a circle and P be a point. Then

i) P lies inside the circle S=0 = S;;<0

i) P liesinthecircleS=0=15;:=0

iii) P lies outside the circle S=0= S;; >0

The equation of a circle having the line segment joining A(Xy, y1) and B(Xz, Y2) as diameter is
(X =X)(X = x2) + (y —y1)(y —¥2) = 0.

Two circles are said to be concentric if their centres are the same.

The equation of a circle concentric with the circle x* +y? + 2gx + 2fy + ¢ = 0 is of the form x* +
y? + 2gx + 2fy + k = 0, where k is a constant.

Given 3 points A, B, and C then

i) only one circle passes through A, B, and C iff A, B, C are non collinear.

if) A circle through A, B, C is impossible iff A, B, C are collinear

The equation of the circumcircle of the triangle formed by the line ax + by + ¢ = 0 with the
coordinate axes is ab(x? + y?) + c(bx + ay) = 0.
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The general form of equation of the circle circumscribing the triangle formed by the lines a;x + byy
+C1=0,aX+byy+c,=0,a3x +bgy +c3=0is a(aix + byy + c1)(ax + by + ¢) + b(axx + by +
C2)(asX + bay + C3) + c(asx + bgy + c3) (arx + byy + ¢1) = 0.
If two lines a;x + byy + ¢; = 0, axx + by + ¢, = 0 meet the coordinate axes in four distinct points
then those points are concyclic < aja; = bib,.
If the lines a;x + byy + ¢; = 0, axx + by + ¢, = 0 meet the coordinate axes in four distinct concyclic
points, then the equation of the circle passing through these concyclic points is (aix + by + ¢1)(axx
+ b2y + Cz) - (albz + azbl)xy =0.
The equation of the chord joining the two points A(X1, Y1), B(Xz, y2) in the circle S =0 is S$;+S; =
S1z.
The equation of the tangent to the circle S = 0 at P(Xy, y1) is S; = 0.
The equation of the normal to the circle S = x* + y? +2gx + 2fy + ¢ = 0 at P(xy, y1) is (y1 + f)(x —
X1) = (X2 + g)(y —y1) = 0.
The normal to the circle S = 0 at P(x3, y1) passes through the centre (—g, —f) of the circle.
The equation of the normal to the circle x? +y® = r? at P(xy, y1) is y1X — X1y = 0.
Let L = 0 be a straight line and S = 0 be a circle with centre C and radius ‘r’. Let d be the
perpendicular distance from C to the line L = 0. Then
i) L=0touchesthecircleS=0<r=d.
i) L = 0 intersects the circle S =0 < r > d. Let
L =0bealineand S = 0 be a circle with centre C and radius ‘r’. Let d be the perpendicular
distance from C to the line L = 0. If r > d then

L=0 is a chord of the circle S = 0. The length of the chord = 2yr? —d? . If r <d then L = 0 do not
intersect the circle S = 0.

iii) L = 0 does not touch or intersect the circle
S=0<r<d.

The condition for the circle x* + y? +2gx + 2fy + ¢ = 0 to touch the coordinate axes is g? = f* = c.
The condition for the straight line y = mx + ¢ to touch the circle x* + y? = r? is ¢ = r(1 + m?).
The condition for the x-axis to touch the circle x* + y? +2gx + 2fy + ¢ =0 (c > 0) is g* = c.

The condition for the y-axis to touch the circle x* + y? +2gx + 2fy + ¢ =0 (c > 0) is f* = c.

The condition for the straight line Ix + my + n = 0 may be a tangent to the circle x* + y? + 2gx +
2fy +c=0is (g° + = c)(I> +m? = (Ig + mg — n)2

If the straight line y = mx + ¢ touches the circle x* + y? = r?, then their point of contact is

r’m r?
c'c/

The equation of a tangent to the circle x* + y? = r may be taken asy = mx + ry1+m? .
The condition that the straight line Ix + my + n = 0 may touch the circle x* + y? = r* is n? = r? (I?

2 2
+m?) and the point of contact is {%‘ - rnmJ .

Let S = 0 be a circle with centre (a, b) and radius ‘r’. Then
i) S = 0 touches x-axis < r = |b|

i) S = 0 touches y-axis < r = |a|

iii) S = 0 touches both the axes < r = |a| = |B|

If the tangent drawn from an external point P to a circle S = 0 touches the circle at A then PA is
called length of tangent from P to the circle S=0.
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The length of the tangent drawn from an external point P(x1, y1) to the circle S =0 is \/3_11

The length of the intercept made by the circle

S=x%+y?+2gx + 2fy + ¢ = 0 on (i) x-axis is 2/g® —c (ii) y-axis is 2vf% —c .

If a line passing through a point P(xy, y1) intersects the circle S = 0 at the points A and B then
PA-PB = 811.

If A, B, C, D are four points of which no three are collinear such that PA-PC = PB -PD for some
point P then the point D lies on the circle passing through A, B, C (ie., A, B, C, D are concyclic).
Two tangents can be drawn to a circle from an external point.

The line joining the points of contact of the tangents to a circle S = 0 drawn from an external point
P is called chord of contact of P with respect to S = 0.

The equation to the chord of contact of P(x1, y1) with respect to the circle S=0is S; =0.

The locus of the point of intersection of the tangents to the circle S = 0 drawn at the extremities of
the chord passing through a point P is a straight line L = 0, called the polar of P with respect to the
circle S = 0. The point P is called the pole of the line L = 0 with respect to the circle S=0.

The equation of the polar of the point P(x;, y1) with respect to the circle S=01is S; = 0.

If P lies outside the circle S = 0 then the polar of P meets the circle in two points and the polar
becomes the chord of contact of P.

If P lies on the circle S = 0 then the polar of P becomes the tangent at P to the circle S = 0.

If P lies inside the circle S = 0, then the polar of P does not meet the circle in any point.

If P is the centre of the circle S = 0, then the polar of P with respect to S = 0 does not exist.

Th ; - : 2, 2_2: [-rl —r’m

e pole of the line Ix + my + n =0 (n = 0) with respect to x“ +y“ =r7is [T - J

Two points P and Q are said to be conjugate points with respect to the circle S = 0 if the polar of P
with respect to S = 0 passes through Q.

The condition for the points P(x1, Y1), Q(X2, Y2) to be conjugate with respect to the circle S =0 is
812 =0.

Two lines L; =0, L, = 0 are said to be conjugate with respect to the circle S = 0 if the pole of L; =
0 lieson L, =0.

The condition for the lines I1x + myy + ny =0 and I,x + myy + n, = 0 to be conjugate with respect
to the circle x* + y? = r? (I I, + mimy) = nin,.

Let S =0 be a circle with centre C and radius r. Two points P, Q are said to be inverse points with
respect to S = 0 if i) C,P, Q are collinear (ii) P, Q lies on the same side of C (iii) CP . CQ =r%

If P, Q are a pair of inverse points with respect to a circle S = 0 then Q is called inverse point of P.
Let S =0 be a circle with centre C and radius ‘r’. The polar of a point P with respect to the circle

S =0 meets CP in Q iff P, Q are inverse points with respect to S = 0.

If P, Q are inverse points with respect to S = 0 then P, Q are conjugate points with respect to S = 0.

If P, Q are inverse points with respect to S = 0 then Q is the foot of the perpendicular from P on the
polar of P with respect S = 0.

The polar of a point P with respect to a circle with centre C is a perpendicular to CP.

The equation of the chord of the circle S = 0 having as its midpoint is S; = Sy;.

The equation to the pair of tangents to the circle

S =0 from P(xy, y1) is S? =S,;S.

If P(X, y) is a point on the circle with centre C(a., ) and radius r, then X = o + r cos6, y = 3 + rsin
where 0 < 0 < 2.
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The equations X = o + rcos6, y = 3 + rsinf, 0 < 6 < 2x are called parametric equations of the
circle with centre (o, B) and radius r.

A point on the circle x* + y* = r* is taken in the form (r cos 6, r sin 6). The point (r cos 6, r sin 6) is
simply denoted as point 6.

The equation of the chord joining two points 8; and 6, on the circle x? + y* + 2gx + 2fy + ¢ = 0 iis

0, -0

(X + g) cos %Jr(yn)sin@ = rcosTZ,Where ris radius of circle.

The equation of the tangent at P(6) on the circle

X2 + y?+2gx + 2fy + ¢ = 0 is (x + g)cosd + (y + f)sind = /g% +2 —c .

The equation of the tangent at P(6) on the circle

X*+y?*=r’isxcos0+ysinO=r.

The equation of the normal at P(6) on the circle

x2+y*=r?isxsin®—ycos O =0.

If (X1, y1) is one end of a diameter of the circle

x? +y* + 2gx + 2fy + ¢ = 0, then the other end is

(—2g =X, —2f — y1).

The area of the triangle formed by the tangent at (xs, y1) on the circle x? +y? = a? with the
a4

2] X1y | .

If Ix + my = 1 touches the circle x* +y* = a’ then

I>+m*=a"

The pole of the line Ix + my + n = 0 with respect to the circle (x—a)? + (y— B)* = r* is

coordinate axes is

2 2
[a—!,ﬁ—mJ where N=lo +mp +n.
N N

If A and B are conjugate points with respect to a circle S = 0 and Iy, |, are the lengths of tangents

from A, Bto S =0, then AB% = 12 + 2.

The middle point of the chord intercepted on the line Ix + my + n = 0 by the circle x* + y* = a is
—In -mn

(Iz +m? 12 +m2j'

The length of the intercept cut of from the line

r’(a® +b?)-c?
a? +b? '

If (X1, y1) is the midpoint of the chord AB of the circle S = 0 then length of AB is 2,/-S; .

If (X1, y1) is the midpoint of the chord AB of the circle S = 0 and the tangents at A, B meet at C

3/2
then the area of AABC is CSu)™

ax + by + ¢ = 0 by the circle x* + y* = r* is 2\/[

where r is the radius of the circle.
Sy +r?
The locus of midpoint of the chord of a circle S = 0, parallel to L = 0 is the diameter of S =0 and
which is perpendicular to L = 0.
If 6 is the angle between the pair of tangents drawn from (X1, y1) to the circle S = 0 of radius r then
0 r

tan— = .
2" 5n




Circles

79.

80.

81.

82.
83.

84.

85.

86.
87.

88.

89.

90.
91.

92.

93.

94.
95.

If 1ix + my + n; = 0, Ix+ may + n, = 0 are conjugate lines w.r.t tue circle x? +y?+2gx+2fy+c =0
then, (Il + mmy) (g° +f2-c)= (gl +fmi—ny)
(g |2 + fmz - n2)
The length and the midpoint of the chord Ix + my +n =0 (n = 0) w.r.t the circle x* + y* = a® is
5 a?(r? +m?)-n? ( -/  -mn J
0% +m? ’ '

02 +m? 1% +m?

The condition that the pair of tangents drawn from the origin to the circle x* + y* + 2gx + 2fy +c=
0 may be at right angles is g* + f* = 2c.

EQ of the circle passing through (a, b), (a, a) and (b, a) is X* + y* — x(a +b) — y(a +b) + 2ab =0.

If two lines a;x + by + ¢;=0 and a,x + byy + ¢, =0 meet the coordinate axes in four distinct points
then those points are concylic if a;a, = bib, and its centre is

[sum of x —intercepts sum of y—interceptsj

2 ’ 2
A square is inscribed in the circle x* + y* + 2gx + 2fy + c= 0 with its sides parallel to the axes of

coordinates. The coordinates of the vertices are (— gt fe j and its sidea= 2.

22
An equilateral triangle is inscribed in the circle
X2 +y? + 2gx + 2fy + ¢ = 0 then

i) the area of circle = % (g>+f -c)

ii)sidea=+3r

The farthest distance of an external point p(x..y1) to the circle x* +y* + 2gx + 2fy + c = 0liscp + .
The farthest point on the circle x* + y? + 2gx + 2fy + c= 0 form an external point P(x1, y1) is B
which divides centre ¢ and p in the ratio r : cp + r externally.

The nearest point on the circle x* + y? + 2gx + 2fy + ¢ = 0 from an external point p(Xs, y1) is A
which divides centre ¢ and p in the ratio r : cp —r internally.

The locus of the point of intersection of two perpendicular tangents to s = x* + y? + 2gx + 2fy + c=

Oiss—r’=0.

Area of the triangle formed by tangent at (X1, y1) to s = 0 with coordinate axes is EM.
2|x,+9lly, +fl

Tangents from a point are drawn one to each concentric circle s;= 0 and s,=0. If the tangents are

perpendicular then the locus of the points is

(x+g)’+(y+f)’=r’+

For any point on the circle x* + y* = a’ tangents are drawn to the circle x> + y? = b? (a > b) then the

angle between the tangents is 2 sin"*(b/a).

The area of the Quadrilateral formed by the two tangents through P(x3, y;) to the circle and centre

IST /sy -

The angle subtended by the midpoint of chord at the centre of the circle is 6 = 2cos ™ (d/r).

The locus of the mid points of chords of the circle s = 0 makes an angle 90° at the centre of the
circle is (x + g)? + (y +f)? = r’/2




